numpy
库的导入
import numpy as np
1. 数组的创建
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print(type(arr))
arr1 = np.array([[1, 2, 3], [4, 5, 6], ['a', 3, 4], [5, 6, 7]])
print("数组形状", arr1.shape)
2. 索引和切片
print(arr[0])
print(arr[0:2])
print(arr1[0])
print(arr1[0:2])
3. 运算 +-*/ 对应位置上的运算进行运算
print([1, 2, 3] + [4, 5, 6])
print(np.array([1, 2, 3]) + np.array([4, 5, 6]))
print(np.array([1, 2, 3]) * np.array([4, 5, 6]))
4. 数组形状操作
arr2 = np.array([[1, 2, 3], [4, 5, 6], ['a', 3, 4], [5, 6, 7]])
print(arr2.shape)
arr3 = arr2.reshape(2, 6)
print(arr3, "\n新的数组的形状是", arr3.shape)
arr2T = arr2.transpose()
print(arr2T, "\n数组的转置的形状是", arr2T.shape)
5. 线性代数
arr4 = np.array([1, 2, 3])
arr5 = np.array([4, 5, 6])
arr4_dot_arr5 = np.dot(arr4, arr5)
print(arr4_dot_arr5)
arr6 = np.array([[1123, 32, 31], [44, 524, 69], [23, 324, 423], [50798, 6324, 712]])
print("arr6的平均值", arr6.mean())
print("arr6的平均值", np.mean(arr6))
print("arr6的和", arr6.sum())
print("arr6的最大值", arr6.max())
print("arr6的最小值", np.min(arr6))
print("arr6的标准差", arr6.std())
print("arr6的排序", np.sort(arr6))
print("arr6的排序2", np.sort(arr6.reshape(-1)))
print(arr6[(arr6 > 1000) & (arr6 < 10000)])
6. 数据的保存和导入
np.save("arr6", arr6)
arr7 = np.load("arr6.npy")
print(arr7)
